Some remarks on the signed domatic number of graphs with small minimum degree
نویسندگان
چکیده
منابع مشابه
The signed domatic number of some regular graphs
Let G be a finite and simple graph with vertex set V (G), and let f : V (G) → {−1, 1} be a two-valued function. If ∑ x∈N[v] f (x) ≥ 1 for each v ∈ V (G), where N[v] is the closed neighborhood of v, then f is a signed dominating function on G. A set {f1, f2, . . . , fd} of signed dominating functions on Gwith the property that ∑d i=1 fi(x) ≤ 1 for each x ∈ V (G), is called a signed dominating fa...
متن کاملUpper bounds on the signed total (k, k)-domatic number of graphs
Let G be a graph with vertex set V (G), and let f : V (G) −→ {−1, 1} be a two-valued function. If k ≥ 1 is an integer and ∑ x∈N(v) f(x) ≥ k for each v ∈ V (G), where N(v) is the neighborhood of v, then f is a signed total k-dominating function on G. A set {f1, f2, . . . , fd} of distinct signed total k-dominating functions on G with the property that ∑d i=1 fi(x) ≤ k for each x ∈ V (G), is call...
متن کاملOn the signed total domatic numbers of directed graphs
Let D = (V,A) be a finite simple directed graph (shortly digraph) in which dD(v) ≥ 1 for all v ∈ V . A function f : V −→ {−1, 1} is called a signed total dominating function if ∑ u∈N−(v) f(u) ≥ 1 for each vertex v ∈ V . A set {f1, f2, . . . , fd} of signed total dominating functions on D with the property that ∑d i=1 fi(v) ≤ 1 for each v ∈ V (D), is called a signed total dominating family (of f...
متن کاملSigned k-domatic numbers of graphs
Let D be a finite and simple digraph with vertex set V (D), and let f : V (D)→ {−1,1} be a two-valued function. If k ≥ 1 is an integer and ∑x∈N−[v] f (x) ≥ k for each v∈V (D), where N−[v] consists of v and all vertices of D from which arcs go into v, then f is a signed k-dominating function on D. A set { f1, f2, . . . , fd} of distinct signed k-dominating functions of D with the property that ∑...
متن کاملThe upper domatic number of powers of graphs
Let $A$ and $B$ be two disjoint subsets of the vertex set $V$ of a graph $G$. The set $A$ is said to dominate $B$, denoted by $A rightarrow B$, if for every vertex $u in B$ there exists a vertex $v in A$ such that $uv in E(G)$. For any graph $G$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_p}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i rightarrow V_j$ or $V_j rightarrow...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2009
ISSN: 0893-9659
DOI: 10.1016/j.aml.2008.09.006